Skip to main content

Build Your First ML Model

Let's build our first Machine Learning model!
We'll predict student marks based on how many hours they studied. 🎯

We’ll use:

  • Jupyter lab or Google Colab for coding
  • pandas to handle data
  • numpy for math
  • matplotlib to plot
  • scikit-learn to build the model

Step 1: Import Libraries on Jupyter Lab​

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

Step 2: Create a Dataset​

data = {
"Hours": [1, 2, 3, 4, 5, 6, 7],
"Marks": [10, 20, 30, 40, 50, 60, 70]
}

df = pd.DataFrame(data)
print(df)

Step 3: Visualize the Data​


plt.scatter(df["Hours"], df["Marks"])
plt.title("Study Hours vs Marks")
plt.xlabel("Hours")
plt.ylabel("Marks")
plt.show()

Step 4: Train the Model​


X = df[["Hours"]] # Features
y = df["Marks"] # Target

model = LinearRegression()
model.fit(X, y)

Step 5: Make Predictions​


predicted = model.predict([[5]])
print(f"Predicted Marks for 5 hours of study: {predicted[0]:.2f}")

Step 6: Plot the Line​


plt.scatter(X, y)
plt.plot(X, model.predict(X), color='red') # Best fit line
plt.title("Study Hours vs Marks (Model)")
plt.xlabel("Hours")
plt.ylabel("Marks")
plt.show()

What You Just Did ✨​

  • Built your first Supervised Learning model
  • Understood the use of pandas, numpy, matplotlib, and scikit-learn.
  • Learned how ML predicts future data